5. Plasticity and Fracture Prediction Under Nonlinear Loading

Wing Kam Liu, Walter P. Murphy Professor, Northwestern University

President of the International Association for Computational Mechanics
Past Chair of National Committee on Theoretical & Applied Mechanics of US National Academies
Member of the Board of International Scientific Organizations of US National Academies
Member of Center for Hierarchical Materials Design (CHiMaD)
Member of Northwestern Initiative on Manufacturing Science and Innovation (NIMSI)

http://www.tam.northwestern.edu/wkl/liu.html, w-liu@northwestern.edu

Project PIs:
Wing Kam Liua, Greg Wagnera, Jian Caoa, Brad Kinseyb, Marko Knezevicb, Amine Benzergac

aNorthwestern University
bUniversity of New Hampshire
cTexas A&M
Executive Summary:

- **Objective/Industrial Need**: The capability of quickly predicting macroscale properties based on microstructure evolution.
- **Approach**: Data-driven multiscale modeling using reduced order Self-consistent Clustering Analysis (SCA) [1000x faster in 3D sim.]
- **Deliverable**: Experimentally-validated simulation tools.
- **Budget and Timeline**: $500K for 3 years; supports 3 RAs (micro/meso-scale modeling, meso/macro-scale modeling, experimental characterization).
Industrial Needs and Relevance:

- Plasticity and fracture lead to failure of metallic material during processing and service
- High-fidelity simulation tools can:
 - Predict part’s behavior under nonlinear loading
 - Improve understanding of material’s properties
 - Reduce number of experiments and cost

Plasticity and Fracture Prediction Under Nonlinear Deformation Paths

Industrial Needs and Relevance:

Save development time and less iteration in product and process design

(a) Strain reversal in a punching process
(b) Edge crack of Advanced High-Strength Steel sheets
(c) Forming to crash simulation in car bodies
Project Objectives:

• Develop data compression and data analysis methods to accelerate computations
• Combine data processing techniques and multiscale simulation methods to establish a data-driven multiscale simulation framework
• Use such framework to reduce computational cost while keeping accuracy in modeling
• Extend this framework to plasticity and fracture prediction
• Under this common goal, the project objectives include, but are not limited to:
 1. Simulate different metal forming processes
 2. Predict macroscale properties based on microstructure evolution
 3. Increase computational efficiency by data-driven multiscale modeling
Approach/Methodologies:

The group has many technologies ready to use or in development stage. Selected technologies are listed below:

a) Multiresolution Continuum Theory (MCT)
b) Self-consistent Clustering Analysis (SCA)
c) Experiments for fracture calibration
Multi-resolution Continuum Theory

- Too expensive to model microstructure explicitly
- Captures size effects
- Mesh independent

- Low computational cost
- Captures only one scale
- Cannot capture size effects
- Mesh dependent

- Low computational cost
- Captures multiple scales of localization
- Captures size effects
- Mesh independent
Reduce Order Modeling by SCA

Offline or training stage (SCA)

1) Domain decomposition (k-means clustering): find material clusters.

- Strain concentration tensor is used for characterizing the responses:
 \(\varepsilon^{\text{micro}}(x) = A(x) : \varepsilon^{\text{macro}} \)

2) Compute the interaction tensors based on Green’s function

Online or predictive stage (SCA)

Self-consistent clustering analysis based on Lippman-Schwinger equation.

Computational time drastically reduced

Numerical modeling of ductile fracture mechanisms

• Remeshing algorithm
• Large plastic strain
• Ductile matrix

Void growth & coalescence

• Composite with brittle particles
• Cracks modeled with Level-Sets & remeshing
• Plastic localization and void coalescence

Particle debonding & fragmentation

Concurrent Simulation Based On SCA

- Same microscale SCA database is used for materials with hard and soft inclusions
- The SCA reduced order module is implemented as a VUMAT in ABAQUS under 2D plane strain condition.
Evolution of The Macroscale Effective Plastic Strain Field

Hard inclusions

Soft inclusions

Displacement Δ (mm)
Damage Parameter Comparison: 1-step vs. 3-step homogenization

One-step homogenization

Three-step homogenization

elastoplastic material without damage

Reference material without damage
- 1-step homogenization
- 3-step homogenization
SCA Concurrent simulation: Damage evolutions (Hard Inclusions)

- Hard inclusions help to carry the load and increase the overall stiffness. The damage initiation is sensitive to the shear loading.
Relation to A/SP Projects

- Numerical models developed here can be used as numerical experiments to simulate loading paths that are impossible or hard to obtain in physical tests
- Provide more realistic deformation mechanisms at the microstructure level
- Use microstructure and fracture data already generated from A/SP projects as a starting point to build up and validate the multi-scale model
Experimental Characterization

– Microstructure characterization
– Tests for determining fracture models
– In-situ damage evolution using ANL facilities

Proposed testing efforts under monotonic and multiaxial loadings

Most tests can be done in one universal testing machine.
5. Plasticity and Fracture Prediction Under Nonlinear Loading

Deliverables:

• An experimentally-verified computational platform for evaluating fracture and material damage of advanced materials while incorporating micromechanical effects with macrostructural models.

• A multiscale software interface and integration tool for fracture prediction in existing commercial CAE tools (e.g., ABAQUS, LS-DYNA), with documentation

• Training and consulting services for new software interface.
5. Plasticity and Fracture Prediction Under Nonlinear Deformation Paths

Budget and Timeline:

Estimated cost of the project is $500K for three years, including 3RAs and experimentation cost.

<table>
<thead>
<tr>
<th>Task / Milestone</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q1 Q2</td>
<td>Q3 Q4</td>
<td>Q1 Q2</td>
</tr>
<tr>
<td>Material characterization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-scale theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool integration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model validation and Doc</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Plasticity and Fracture Prediction Under Nonlinear Loading

Discussions:

– Are the industrial need and relevance accurately captured?
– Are the objectives realistic and complete?
– Are the approaches technically sound and appropriate?
– Are there alternative implementation paths or better approaches?
– Are the deliverables impactful to industrial partners?
– Are the budget and timeline reasonable?
– Are there conflicts with intellectual property or trade secrets?
– List additional project specific questions are appropriate.